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Abstract

Hindcasts based on the Extended Streamflow Prediction (ESP) approach are carried
out in a typical rainfall-dominated basin in China, aiming to examine the roles of ini-
tial condition (IC), future atmospheric forcing (FC) and hydrologic model uncertainty
(MU) in the streamflow forecast skill. The combined effects of IC and FC are explored5

within the framework of a forecast window. By implementing virtual numerical simula-
tions without the consideration of MU, it is found that the dominance of IC could last
up to 90 days in dry season, while its impact gives way to FC for lead times exceed-
ing 30 days in the wet season. The combined effects of IC and FC on the forecast
skill are further investigated by proposing a dimensionless parameter (β) that repre-10

sents the ratio of the total amount of initial water storage and the incoming rainfall. The
forecast skill increases exponentially with β, and varies greatly in different forecast win-
dows. Moreover, the influence of MU on forecast skill is examined by focusing on the
uncertainty of model parameters. Two different hydrologic model calibration strategies
are carried out. The results indicate that the uncertainty of model parameters exhibits a15

more significant influence on the forecast skill in the dry season than in the wet season.
The ESP approach is more skillful in monthly streamflow forecast during the transition
period from wet to dry than otherwise. For the transition period from dry to wet, the low
skill of the forecasts could be attributed to the combined effects of IC and FC, but less
to the biases in the hydrologic model parameters. For the forecasting in dry season,20

the usefulness of the ESP approach is heavily dependent on the strategy of the model
calibration.

1 Introduction

Reliable hydrologic forecasts are crucial in many hydrologic sectors, e.g., flood control,
irrigation, water supply, etc. Forecast skill is mainly affected by three factors, i.e., the25

uncertainty of hydrologic models used to derive the streamflow from atmospheric forc-
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ing (precipitation, temperature, etc.), the uncertainty of initial conditions of the basin
at the beginning of the forecast, and the uncertainty of atmospheric forcing during the
forecast horizon. These factors are referred to as the “uncertainty triplet” (Zappa et al.,
2011). Examination of the three types of uncertainty and their joint impacts on the
forecast skill is therefore not only beneficial for the understanding of rainfall-runoff pro-5

cesses, but also for facilitating hydrologic applications with processed-based hydrologic
models.

Previous studies revealed that the dominance of IC and FC in the hydrologic fore-
cast skill varies with season and location (Mahanama et al., 2008, 2011; Shukla and
Lettenmaier, 2011; Singla et al., 2012; Maurer and Lettenmaier, 2003). For hydrologic10

forecasts, IC is frequently referred to as the initial water storage (e.g., soil moisture,
snow water equivalent) of the entire basin. Li et al. (2009) found that IC dominates the
forecast skill with lead time of up to 1 month, where beyond that FC becomes the main
contributor to the forecast skill. However, for some basins over the US, initial soil mois-
ture contributes significantly to the forecast skills of all seasons except spring, and the15

contribution could last up to six months (Mahanama et al., 2011). The dominance of
IC is related to the persistence of soil moisture and/or snow water equivalent (SWE).
It is not surprising that SWE dominates the forecast skill over those basins of which
streamflow are mainly generated by the snow melt (Koster et al., 2010). For a short
lead time (within the concentration time of the basin) or under a dry period, soil mois-20

ture is the only source of streamflow observed at the outlet of the basin (Kirkby, 1978).
The persistence of IC is also affected by the future atmospheric conditions. Wood and
Lettenmaier (2008) found that IC yields forecast skill for up to five months during the
transition between the wet and dry seasons, but for the reverse transition, FC is crit-
ical. IC is also proved to have a stronger impact during the inter-monsoon seasons25

in Sri Lanka (Mahanama et al., 2008). More recently, Shukla et al. (2013) examined
the relative roles of IC and FC in seasonal hydrologic forecast at a global scale. Their
results are consistent with previous studies. Mahanama et al. (2011) defined a param-
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eter κ (variance ratio of initial water storage and total rainfall within forecast period) to
combine the effect of IC and FC, allowing the estimates of the potential forecast skills.

In this study, we will continue with the discussion of the impact of IC and FC on
hydrologic forecast by implementing hindcasts with the ESP (Extended Streamflow
Prediction) approach (Day, 1985). In particular, due to the persistence of IC and the5

impact of FC, we believe that there should be certain proper time ranges which we
termed as “forecast windows” (see the definition in Sect. 3), and beyond the ranges
the forecast is not reliable any more. The impact of IC and FC will be discussed under
the framework of the “forecast window”. In addition, we will try to combine the effect
of the two factors by defining a new dimensionless parameter, based on which the10

relationships of forecast skill and the combined effect of IC and FC could be derived.
The third member of the “uncertainty triplet” is model uncertainty (MU). The rainfall-

runoff model based forecasting approach (e.g. ESP) requires the model to provide
accurate initial conditions of the basin at the beginning of the forecast. The forecast
skill will undoubtedly be impaired with model uncertainty (Walker et al., 2003; Demirel15

et al., 2013). MU could be induced by systematic biases in model input, the structure of
the model, and model parameters etc. (Walker et al., 2003). While errors in the model
input and structure may not be readily reduced, we will only focus on the uncertainty of
model parameters in this study through a process of model calibration, assuming that
the input as well as the model structure is robust. Shi et al. (2008) demonstrated the20

influence of hydrologic model calibration in the improvement of seasonal streamflow
forecasting.

The analyses in Sect. 3 are based on the following hypotheses: (1) forecast skill
varies with initial forecast date and forecast window; (2) the combined effect of IC and
FC determines the reliable forecast window in hydrologic forecasting; (3) hydrologic25

model calibration should be a multi-objective optimization problem for reliable simula-
tions of both high flows and low flows. We will test those hypotheses over the upper
Hanjiang River basin (UHRB) in China by examining the relative roles of IC, FC and
MU on hydrologic forecast. UHRB is a typical rainfall-dominant river basin (see descrip-
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tions in Sect. 2), which is also the headwater of South-to-North Water Transfer project
(SNWT) in China. This study will broaden the application fields of ESP approach by
testing its validity in rainfall-dominant rather than snow-dominant basins. The results
will shed light on future application of ESP approach in similar basins.

The paper is organized as follows. Study area and methods will be described in5

Sect. 2; Sect. 3 will present results, with conclusions and discussion following in Sect. 4.

2 Study area and methods

2.1 Study area

The study area is the upper Hanjiang River basin (abbreviated as UHRB below, see
Fig. 1 for its geographic location), which is a sub-basin of the Yangtze River in China.10

The drainage area of UHRB is 9.52×104 km2. It is a typical monsoon-climate region,
characterized by the summer dominant rainfall within the year and great distinctions
between rainy and dry seasons (Guo et al., 2009). Figure 2 shows the intra-annual
cycle of monthly rainfall and runoff averaged from 1970–2000 over UHRB. Clearly, the
runoff regime in this basin is dominated by the rainfall pattern. The integral runoff from15

May through October (the flood-season period) accounts for about 80 % of the annual
total. Based on the rainfall and runoff regimes presented in Fig. 2, we divided a water
year into four stages, i.e., pre-wet season (May to July), post-wet season (August to
October), pre-dry season (November and December) and post-dry season (January to
April of the following year). The distinct variations of the basin state and rainfall pattern20

within the four stages have some implications in the forecast skill of the ESP approach,
as will be discussed in the next section.

2.2 ESP approach

ESP is a widely used approach for hydrologic forecasting (Werner et al., 2004), and
usually serves as a reference for validating climate model-based seasonal hydrologic25
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prediction (Wood et al., 2005; Luo and Wood, 2008; Yuan et al., 2013). The basic idea
of ESP is to run a candidate hydrological model with observed meteorological forcing
through a spin-up period to the time of the forecast. Then, the model with the spun-up
initial basin state is driven by an ensemble of forcing (precipitation, temperature, etc.)
that is randomly sampled from the observed historical records (Day, 1985). An ensem-5

ble of the streamflow traces is then generated, containing the information of forcing
uncertainty on the forecast. The arithmetic mean value of the ensemble forecasts is
selected as the issued forecast, simply because the “mean” value is statistically re-
garded as an unbiased estimator of a sample (DeGroot and Schervish, 2012).

2.3 Model setup10

The hydrological model used in this study is Tsinghua-Representative Elementary Wa-
tershed model (referred to as THREW model) (Tian, 2006). It is a semi-distributed hy-
drological model, based on the theory of representative elementary watershed raised
by Reggiani et al. (1999). The model consists of a set of balance equations for mass,
momentum, energy and entropy, including associated constitutive relationships for var-15

ious exchange fluxes, at the scale of a well-defined spatial domain. Details of the model
can be found in Tian (2006, 2009). The THREW model has been successfully applied
in several previous studies (Mou et al., 2008; Yang et al., 2013; Li et al., 2012; Liu et al.,
2012; Tian et al., 2006, 2012).

The study period is 1970–2000, which is divided into two parts with the purpose of20

model calibration and validation. The calibration period is 1970–1980 and the rest is
used for model validation. The model calibration procedure is as follows: initial values
and the reliable ranges of each parameter are determined according to the physical
attributes of UHRB and previous THREW modeling experience (see Sun et al. (2013)
for the information of the key parameters in the model). An automatic optimization25

algorithm, ε-NSGAII (Reed et al., 2003; Deb et al., 2002), is then used for further
calibration. The value of each parameter is finally determined based on the automatic
calibration results. This calibration procedure enables the parameters to bear clear
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physical meanings and maintains the performance of the model as well. The objective
function for the automatic calibration is the Nash–Sutcliff coefficient (NSE) (Nash and
Sutcliffe, 1970), as widely used in previous hydrological modeling studies.

Another water balance related metric WB, together with NSE, is used to evaluate the
performance of the model during the two periods. WB takes the form as:5

WB =
Robs −Rsim

Robs
(1)

where Robs and Rsim are the total observed and simulated runoff (in mm), respectively.
The statistics are summarized in Table 1. The THREW model performs quite well

in UHRB. The values of daily NSE in both the calibration and validation period are
above 0.80. The value of monthly NSE is as high as 0.99 (see Yang et al. (2013) for10

more detailed evaluations of the THREW model performance in UHRB). The evaluation
statistics indicate that the model accurately captures the dynamics of the streamflow
during 1970–2000 over UHRB, given the observed atmospheric forcing.

However, this lumped calibration strategy might only present the overall performance
of the model during the whole simulation period. It is not necessary to guarantee the15

performance over each sub-period (e.g., dry seasons). We will present further details
of another model calibration strategy used in this study in the next section.

3 Results

In this section, we present the evaluation of the impacts of IC and FC on the forecast
within different forecast windows (see Sect. 3.1 for the definition of forecast window)20

and at two contrasting initial states. The combined effects of IC and FC is then dis-
cussed by defining a new parameter β. The effect of MU (the uncertainty of model
parameters) will be examined in Sect. 3.2.
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3.1 The impact of IC and FC

3.1.1 Definition of forecast window (FW)

A forecast window (FW) proposed in this study can be regarded as an integration time
window initiating from the forecast date. It differs from lead time, which is a frequently
used term in hydrologic forecasting (see Fig. 3). Lead time is the gap between the time5

that the forecast is issued and the occurrence of the forecasted variable. For example,
if we are interested in the total streamflow volume of this July, supposing the forecast
time is issued some day in January, then the lead time should be about 6 months (the
time gap between January and July). The model needs to run from January till the end
of July. In this context, this study focused on the cases with no lead time (equal to zero).10

They could be regarded as “real-time” forecasts but with different FWs. The forecasted
variable is the integral streamflow volume within each FW.

3.1.2 Evaluation of the impact of IC and FC

“Virtual” experiments are designed in this section for the reason of avoiding the incorpo-
ration of model uncertainty (MU) effect. In these “virtual” experiments, the forecasts are15

evaluated against retrospective streamflow simulations (driven by actual atmospheric
forcing) instead of actual streamflow observations, assuming that the model is “per-
fect”. The design of the experiment is summarized in Table 2. Eight different forecast
windows are set: 7 days, 15 days, 30 days, 60 days, 90 days, 120 days, 150 days and
183 days. We also choose two contrasting forecast dates, 1 February and 1 July of20

each year, representing the dry and wet initial states of the basin, respectively. The
forecasts are made at two initial dates for each year with 8 different forecast windows
based on the ESP approach.

The results are evaluated by using the Pearson correlation coefficient ρ. ρ decreases
with the extension of forecast window for both initial dates (Figs. 4 and 5). However,25

the patterns are a little different. For the dry scenario (the initial date is 1 February), ρ
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is 0.99 for the 7 day window, and gradually drops below 0.50 for the window exceeding
90 days; while for the wet scenario (the initial date is 1 July), the maximum correlation
coefficient is 0.70 for the 7 day forecast window, and quickly reduces to 0.46 for 30 day
window. The forecasts almost equal the climatological mean when the forecast window
exceeds 90 days under this scenario. The contrasting behaviors of the two scenarios5

indicate that the consistency of the forecast seems to bear a wider range of forecast
windows for the dry scenario. Therefore, the performance of ESP is a function of initial
date and the forecast window.

To further illustrate the impact of IC/FC and their relative role in the forecast, we
employed an analytical framework, as developed by (Wood and Lettenmaier, 2008)10

and used by Li et al. (2009). It is effective to discern relative impacts of IC and FC on
the forecasts, as well as the dynamic competence of the two factors with the increase of
forecast window. The basic idea of this framework is to re-sort the forecasts according
to IC (soil moisture) and FC (precipitation forcing). 2-D images are produced based
on the resorted matrix of the forecasts. The columns of each 2-D image in Figs. 615

and 7 can be regarded as a reverse-ESP (R-ESP) approach which was introduced by
Wood and Lettenmaier (2008) (see also Fig. 2 of Li et al. (2009) for more details of
R-ESP and ESP). The basic idea of R-ESP is to drive an ensemble of ICs, which are
derived by resampled meteorological ensembles during the spinup period, using the
accurate meteorological forcing. R-ESP reveals the influence of IC uncertainty on the20

forecast, while ESP focuses on the impact of FC. The patterns of the images reflect
the relative impact of IC and FC: if these are horizontally structured, the forecasts are
largely determined by IC, and FC has a relatively small impact; while FC dominates the
forecast if the image is vertically structured. A “hatched” image indicates a combined
influence of IC and FC.25

Organized structures could be observed in both Figs. 6 and 7. For the forecasts
initialized on the 1 February (Fig. 6), the patterns of the images are characterized
by horizontal stripes for forecast windows less than 60 days (2 months). The patterns
change into more vertical stripes when the window exceeds 90 days. For the forecast
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of 90 day forecast window, a hatched pattern is displayed. IC is the dominant impact
on the forecasts within 2 month forecast window when ESP has most skill; while this
dominance changes to FC for larger forecast windows (exceeding 90 days), and ESP
loses its skill as well. The 90 day window is the divide of the dominance of the two fac-
tors. Both the IC and FC could impact the forecasts within the 90 day forecast window.5

For the forecasts initialized on the 1 July (Fig. 7), the dominance of IC is constrained
to 30 days. For the rest of forecast windows (exceeding 30 days), FC dominates the
forecasts and the forecast skill decays as well.

The possible explanations for the results are: the 1 February represents relatively
dry state of the basin within the year, since it is in the middle of the dry seasons and10

the antecedent precipitation is scarce. The lack of soil moisture to the saturation state
can not be easily filled up with subsequent rainfall events. Thus, the IC could persist for
a long period until the total rainfall within the forecast window is able to compensate the
initial soil moisture anomaly. This could explain why the “hatched” image occurs on the
90 day case (Fig. 6) and is converted to “vertical” when flood season (May to August)15

begins. For the wet scenario (forecasts initialized on the 1 July), the basin has already
been saturated or near-saturated. In this case, the accumulated soil moisture in the
basin will contribute significantly to the future streamflow regime, just as most snow-
dominated basins behave. However, unlike those snow-dominate basins, UHRB will
experience rainy weather in the subsequent months (August, September and October).20

Several heavy precipitation events could easily recharge the basin and eliminate the
persistence of the soil moisture completely, so the IC is not able to persist for a long
period. It seems that the persistence of IC is not solely determined by the magnitude
of initial anomaly, but also by the subsequent meteorological conditions. The forecast
skill of the ESP approach is determined by the combined effects of IC and FC, which25

will be examined by defining a new parameter in the next section.
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3.1.3 Combined effects of IC and FC

Based on the analyses in Sect. 3.1.2, we further come up with a new parameter, which
tries to synthesize the effect of IC and FC on the forecasts and generalize the relation-
ships to the forecasts with more diverse ICs. The new parameter beta (β) is a dimen-
sionless ratio of total initial water storage and incoming rainfall within forecast windows,5

defined here as

β = log(Rsm/Rp) (2)

where Rsm is the total initial water storage (e.g., soil moisture, residual water in the
river, expressed as “depth” and the unit is mm), representing the influence of IC; Rp
is the total rainfall (in mm) within the forecast windows, representing the influence of10

FC. We take the logarithm of the ratio for mathematical reasons. The form of beta (β)
is similar with the parameter kappa (κ) defined by Mahanama et al. (2011). However,
they focus on the variance instead of the total amount, since the integration window is
fixed to 3 months in their study.

We employed MARE (Mean Absolute Relative Error) as the evaluation metric of the15

forecasts. The form is:

MARE =
1
n

n∑
i=1

∣∣∣∣Fsti −Obsi

Obsi

∣∣∣∣×100% (3)

where Fsti and Obsi are the forecasted and observed total streamflow volume within
forecast windows, respectively; n is the number of forecast years, and n = 30 in this
study.20

A new set of forecast windows are used, they are: 3 days, 7 days, 10 days, 15 days,
20 days, 30 days, 60 days and 90 days, since ESP approach presents no skill for the
forecasts beyond 90 days in this study. The first day of each month is chosen as the
forecast date. The details of the experiment are summarized in Table 3. The experi-
ment configurations in this section are also devoid of model uncertainty. An exponential25
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function (y = aebx ) is employed to fit the relationship between the parameter (β) and
evaluation metric (MARE) of the forecasts. The parameters and evaluation values (R2)
of the fitted lines are listed in Table 4.

The accuracy of the forecasts increases exponentially with β, corresponding to our
above analysis that the forecasts skill will be mainly determined by IC if the initial water5

storage has a comparatively larger value than the total rainfall within the forecast win-
dows. However, the variability of total precipitation within forecast window also plays
a role. As shown in Fig. 8, the forecast accuracy becomes less sensitive to β as the
forecast window increases. This is probably because the total rainfall within larger fore-
cast windows enables the basin to be fully recharged several times, which eliminates10

the persistence of IC. In addition, the inter-annual variability of the total rainfall decays
with the integrating time window (e.g., the variability of seasonal precipitation is usually
smaller than that of weekly precipitation), which should come as no surprise. Thus,
a larger value of total precipitation with smaller variability will induce smaller sensitivity
of forecast accuracy to β.15

It is also noteworthy that although the fitted lines asymptotically approximate to 0,
there will be upper bounds for the forecast accuracy in reality. As can be observed
in Fig. 8, the upper bounds of forecast skill for 3 days are much higher than 90 days,
indicating that short-term forecasts are potentially more reliable than long-term forecast
using the ESP approach. However, we also notice that short-term forecasts are not20

necessarily more accurate than long-term counterparts (the relatively larger vertical
spans for the smaller forecast window lines in Fig. 8). Since the model is assumed to
be error free, the possible explanation could be the variability of the total precipitation
within forecast windows. For short-term forecast, the variability of FC should also be
considered in addition to IC, especially for the cases when FC takes the dominance of25

the forecast skill.
Figure 8 also shows the potential ability of ESP approach within different forecast

windows over UHRB. Although the newly defined parameter (β) only focuses on the
ratio of the total water storage and rainfall, the derived relationships between the β
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and forecast skill reveal the effect of variance as well. We note that this analytical
framework of β is able to combine the effects of IC and FC, and provide a first-order
understanding of when and to what extent the forecast skill may be achieved based on
the ESP approach in UHRB.

3.2 The impact of MU5

Model Uncertainty (MU) is another factor that influences the forecast. The essence of
the ESP approach is to utilize the IC of the basin provided by the hydrological model
through spin-up period. Thus, the reliability of the IC greatly impacts the final accuracy
of the forecast. The model used in this study has been calibrated against NSE, with the
evaluation metrics summarized in Table 1. Although the model presents a remarkably10

good performance during the whole simulation period, its performance in each sepa-
rate month varies. As shown in Fig. 9b, the value of NSE is above 0.90 for July, August,
September and October. These four months are also the wettest during the year in
UHRB. For dry months (January to April), NSE is below 0. The value of NSE is 0.58
and 0.64 for March and April, respectively.15

Previous studies revealed the problems of model calibration using single objective
function. The mathematical form of NSE results in the over-weighting of high flows
in the calculation (Schaefli and Gupta, 2007). Even though the simulation of low flow
deviate is poor, NSE will not be affected, since the magnitude is small relative to the
flood period. In this study, we also carried out a different model calibration strategy. The20

low flows (streamflow from January to May) are extracted from each year, constituting
a new time series. The model is again calibrated with the same calibration procedure,
but only for the new low-flow time series. NSE is still used as the calibration metric
because of its simplicity. Future studies could investigate the effectiveness of other
metrics as suggested by Pushpalatha et al. (2012).25

New NSE for each month (January to May) is shown in Fig. 9b. Model performance
in March, April and May is improved, while for January and February, the new calibra-
tion does not make any improvement. Since the objective of this study is to examine
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the influence of MU (the uncertainty of model parameters) on the forecast accuracy
of ESP approach, we will not endeavor to improve the model performance for each
month. The comparisons of the forecasts made on March and April will be focused. We
set the forecast window to 30 days, which is frequently used in previous studies (e.g.
Smith et al., 1992; Hashino et al., 2006; Wang et al., 2011) and has been proved to be5

effective under different ICs in previous section.
The skill of the forecast in ESP approach is evaluated by SSMSE, defined as

SSMSE = 1−

n∑
i=1

(Fsti −Obsi )
2

n∑
i=1

(Obsi −Obs)2

(4)

Where Obsi and Fsti are the observed and forecasted monthly streamflow volume

(in mm), respectively; Obs is the mean value of the observed streamflow volume (in10

mm), representing the climatological forecast; n is the total number of forecast years,
and n = 30 in this study. This has the same form as Nash–Sutcliff Efficiency, but is
being used for assessing the model performances in individual months. A score of 1
corresponds to a perfect forecast.

During October to December, ESP approach presents high forecast skill (Fig. 9a).15

For March and April, the skill score is far below 0, indicating no forecast skill for this
period. However, this does not indicate the uselessness of ESP approach. When the
forecasts are made based on the re-calibrated models (especially for March and April),
the skill scores are significantly improved. The improvement of the forecast skill in
March and April reinforces our hypothesis that MU (errors in model parameters) influ-20

ences the forecast accuracy in ESP approach, especially for those flow events that are
difficult simulated by hydrologic models.

It is noteworthy that the forecast skill score is low in May, June and July, although
the model performs quite well in this month. The low skill of the forecasts in May, June
and July implies that the ESP approach is no better than climatology for the monthly25
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streamflow forecast of pre-wet seasons in UHRB, which probably could be attributed
to the combined effects of FC and IC in this season (as discussed in previous sub-
sections). For post-wet season (August, September and October) and pre-dry season
(November and December), the ESP approach is useful. Our results are similar to the
study of Wood and Lettenmaier (2008), which showed that the forecast skill is higher5

during the transition period from the wet to dry season than otherwise. However, our
analyses also show that the forecast skill is improved in post-dry season (March and
April, especially) after re-calibrating the hydrologic model used in the ESP. The forecast
skill in January and March is still comparable with that in post-wet and pre-dry seasons,
indicating the potential of ESP approach with well-calibrated hydrologic model. Future10

efforts should focus on the improvement of the model performance in the post-dry sea-
son period (January to April).

4 Conclusions and discussion

In this paper, we have investigated the influence of IC, FC and MU on hydrologic fore-
cast based on the hindcasts using ESP approach over UHRB in China. The concept15

of forecast window (FW) is introduced in this study and the combined effects of IC and
FC within the forecast window is discussed by implementing “virtual” experiments with-
out considering the uncertainty of hydrologic model (structure, parameter, etc.). The
improvement of the model performance also increases the skill of the ESP approach
significantly for low flow forecast, indicating the impact of MU (the uncertainty of model20

parameters) on hydrologic forecast. The results are summarized below.
(1) For dry initial states, the forecast is consistently good within forecast windows

up to 90 days. For wet initial states the persistence decays with the window exceeding
30 days. The contrasting behaviors of the two scenarios highlight the role of IC and FC
on the forecast.25

(2) IC controls the forecast skills within smaller forecast windows. The dominance of
IC on the forecast is shifted to FC with the increase of the forecast windows. A dimen-
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sionless parameter β is proposed to depict the combined effects of IC and FC. The
analytical framework of β provides a first-order understanding of when and to extent
the forecast skills may be achieved based on ESP approach.

(3) Traditional model calibration strategy emphasizes the model behavior during the
wet season, while for dry season the model behaviors would not be guaranteed. This5

affects the accuracy of ESP approach for predicting low flows. By re-calibrating the
model for low flows, the uncertainty of model parameters is reduced within the dry
season, which improves the model performance as well as the forecast skill.

(4) The performance of ESP approach for monthly streamflow forecast is more re-
liable during the transition period from wet to dry than otherwise over UHRB. For the10

transition period from dry to wet, the combed effects of IC and FC rather than the
model performance play a more important role in the forecast skill. Other innovative
ways should be explored for monthly streamflow forecast during this season.

According to the best of the authors’ knowledge, the concept of forecast window
(FW) is first proposed in this study. We suggest that the concept of forecast window15

(FW) might have some implications in the hydrologic forecasting based on the ESP
approach. The dominance of IC and FC within FWs reflects the potential ability of
ESP. For different scenarios with various combinations of IC and FC, there should be
certain “behavioural forecast windows” (BFWs), beyond which ESP-based hydrologic
forecasts are not accurate and not reliable. In addition, BFW can also be related to20

the physical attributes of each basin (e.g., sizes, maximum concentration time, etc.). Li
et al. (2009) disclosed that the basin size matters in the ESP skill. Thus, the relation-
ship we derived in this study is only basin-specific. More basins with diverse physical
attributes need to be examined, so as to generalize the relationship obtained in this
study, which, however, is the scope of future studies. BFW is crucial in the practical25

implementation of ESP approach by providing a guideline for the design of forecasting
systems and the confidence of the forecast results. However, the framework designed
to examine FW and BFW in this study does not consider lead time in the forecasts.
They could be regarded as zero lead time scenarios. Besides, the influence of MU is
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not considered in the framework. Future studies will further examine the behaviors of
FW and BFW with varying lead time and model uncertainty (structure and parameter)
incorporated.

There are a number of ways (e.g., pre-processing, post-processing) to further im-
prove the performance of ESP approach. For instance, Yang et al. (2013) improved5

the forecast skills of ESP approach by using a reduced set of the ensemble mem-
bers. The members in the reduced ensemble were selected from the historical records
when they have the same climate signals (e.g., SOI, PDO) as the forecast year. Simi-
lar studies could be found in Hamlet and Lettenmaier (1999), Lamb (2010) and Wang
et al. (2011). Instead of using the randomly sampled members, the “pre-processing”10

process enhances the representativeness of future forcing ensembles. Similarly, “post-
processing” aims to remove the bias of the streamflow ensembles, which could also
improve the forecast skill. Possible “post-processing” methods were evaluated in pre-
vious studies (e.g. Kang et al., 2010; Wood and Schaake, 2008; Hashino et al., 2006).
Shi et al. (2008) demonstrated that “post-processing” could reduce the forecast error15

as much as the correction of forecast errors through hydrologic model calibration. Yuan
and Wood (2012) also found that post-processing streamflow forecasts directly from
a global climate forecast model, where its land surface model is un-calibrated, has
comparable performance to a well-calibrated hydrologic model driven by downscaled
and bias-corrected meteorological forcing.20
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Table 1. Calibration and validation statistics for the simulated streamflow of UHRB at Dan-
jiangkou Reservoir station.

Nash–Sutcliff Efficiency (NSE) Water Balance (WB)
Daily Weekly Monthly

Calibration Period (1970–1980) 0.85 0.98 0.99 −0.06
Validation Period (1981–2000) 0.81 0.96 0.99 −0.05
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Table 2. Details of the experiment designs (for different forecast window).

Initial Forecast Date Forecast Windows Ensemble Members Hindcast Period

1 Feb 7 days, 15 days, 31 1970–2000
30 days, 60 days,

1 Jul 90 days, 120 days,
150 days, 183 days
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Table 3. Details of the experiment designs (for deriving the relationships of β and the forecast
skills).

Initial Forecast Date Forecast Windows Ensemble Members Hindcast Period

1 Jan, 1 Feb,
. . .
1 Nov, 1 Dec

3 days, 7 days,
15 days, 20 days
30 days, 45 days,
60 days, 90days

31 1970–2000
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Table 4. Parameters of the exponential function and the R2 value in the relationships of β and
the forecast skills.

Forecast Windows a b R2

3 days 3153 −1.1 0.90
7 days 1055 −0.89 0.92
10 days 561 −0.77 0.96
15 days 270 −0.62 0.92
20 days 155 −0.49 0.81
30 days 134 −0.54 0.82
60 days 67 −0.43 0.71
90 days 50 −0.32 0.56
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Fig. 1. Location of upper Hanjiang River basin (UHRB, denoted as shaded region in the figure)
in China. Dashed line is the boundary of the Yangtze River basin. The grey dots are rain gauges.
The black square represents the location of Danjiangkou Reservoir station.
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Fig. 2. Rainfall and runoff regimes over upper Hanjiang River basin (UHRB). Runoff is the total
amount of monthly inflow to Danjiangkou reservoir divided by basin area. Rainfall is the mean
value of all the rain gauges weighted by area. The unit is in mm.
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Figure 3. Schematic illustration of (a) Forecast Window and (b) Lead time. 580 
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Fig. 3. Schematic illustration of (a) forecast window and (b) lead time.
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Fig. 4. Evaluation of the ESP approach for different forecast windows. The initial forecast date
is 1 February.
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Fig. 5. The same as Fig. 4 but the initial forecast date is 1 July.
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Fig. 6. Runoff forecasts (unit: mm) by ESP (row) and R-ESP (column) for UHRB. Forecasts are
initialized on 1 February. Precipitation forcing (units: mm) is sorted from dry to wet in ascending
order, and Initial conditions (units: mm) is sorted from wet to dry in descending order.
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Fig. 7. The same as Fig. 6 but the forecasts are initialized on 1 July.
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Fig. 8. Scatterplots of β and MARE. The curves are fitted exponential lines for each group
of forecasts with the same forecast window. The parameters of the lines are summarized in
Table 4.
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Fig. 9. (a) Forecast skills of ESP based on different sets of model parameters; (b) model per-
formances for each month. “ESP_all year” (circles) represent using the default parameters of
the model (the whole year). “ESP_Dry” (dots) uses the new-calibrated parameters of the model
(only January to May).
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